We use techniques from time-frequency analysis to show that the space $mathcal{S}_omega$ of rapidly decreasing $omega$-ultradifferentiable functions is nuclear for every weight function $omega(t)=o(t)$ as $t$ tends to infinity. Moreover, we prove that, for a sequence $(M_p)_p$ satisfying the classical condition $(M1)$ of Komatsu, the space of Beurling type $mathcal{S}_{(M_p)}$ when defined with $L^{2}$~norms is nuclear exactly when condition $(M2)'$ of Komatsu holds.
Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis
Alessandro Oliaro;
2021-01-01
Abstract
We use techniques from time-frequency analysis to show that the space $mathcal{S}_omega$ of rapidly decreasing $omega$-ultradifferentiable functions is nuclear for every weight function $omega(t)=o(t)$ as $t$ tends to infinity. Moreover, we prove that, for a sequence $(M_p)_p$ satisfying the classical condition $(M1)$ of Komatsu, the space of Beurling type $mathcal{S}_{(M_p)}$ when defined with $L^{2}$~norms is nuclear exactly when condition $(M2)'$ of Komatsu holds.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BJOS Time frequency.pdf
Accesso aperto
Descrizione: Articolo - versione arxiv
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
272.29 kB
Formato
Adobe PDF
|
272.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.