This paper presents a mixed reality system that, using the sensors mounted on the Microsoft Hololens headset and a cloud service, acquires and processes in real-time data to detect and track different kinds of objects and finally superimposes geographically coherent holographic texts on the detected objects. Such a goal has been achieved dealing with the intrinsic headset hardware limitations, by performing part of the overall computation in a edge/cloud environment. In particular, the heavier object detection algorithms, based on Deep Neural Networks (DNNs), are executed in the cloud. At the same time we compensate for cloud transmission and computation latencies by running light scene detection and object tracking on board the headset. The proposed pipeline allows meeting the real-time constraint by exploiting at the same time the power of state of art DNNs and the potential of Microsoft Hololens. This paper presents the design choices and describes the original algorithmic steps we devised to achieve real time tracking in mixed reality. Finally, the proposed system is experimentally validated.
Real-time object detection and tracking in mixed reality using Microsoft HoloLens
Grangetto M.;Gianaria E.;
2020-01-01
Abstract
This paper presents a mixed reality system that, using the sensors mounted on the Microsoft Hololens headset and a cloud service, acquires and processes in real-time data to detect and track different kinds of objects and finally superimposes geographically coherent holographic texts on the detected objects. Such a goal has been achieved dealing with the intrinsic headset hardware limitations, by performing part of the overall computation in a edge/cloud environment. In particular, the heavier object detection algorithms, based on Deep Neural Networks (DNNs), are executed in the cloud. At the same time we compensate for cloud transmission and computation latencies by running light scene detection and object tracking on board the headset. The proposed pipeline allows meeting the real-time constraint by exploiting at the same time the power of state of art DNNs and the potential of Microsoft Hololens. This paper presents the design choices and describes the original algorithmic steps we devised to achieve real time tracking in mixed reality. Finally, the proposed system is experimentally validated.File | Dimensione | Formato | |
---|---|---|---|
VISAPP_2020_21_CR.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
788.05 kB
Formato
Adobe PDF
|
788.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.