We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending previous work by Langenbruch.~As a consequence we give very general conditions for these spaces to be nuclear.~In particular, we obtain the corresponding results for spaces defined by weight functions.

Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting

Alessandro Oliaro;
2021-01-01

Abstract

We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending previous work by Langenbruch.~As a consequence we give very general conditions for these spaces to be nuclear.~In particular, we obtain the corresponding results for spaces defined by weight functions.
2021
15
1
1
39
https://arxiv.org/abs/2004.08422
Weight matrices, ultradifferentiable functions, sequence spaces, nuclear spaces.
Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl
File in questo prodotto:
File Dimensione Formato  
BJOS Banach Journal.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1743131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact