Extremal length is a classical tool in 1-dimensional complex analysis for building conformal invariants. We propose a higher-dimensional generalization for complex manifolds and provide some ideas on how to estimate and calculate it. We also show how to formulate certain natural geometric inequalities concerning moduli spaces in terms of a complex analogue of the classical Riemannian notion of systole.

Extremal length in higher dimensions and complex systolic inequalities

Pacini, Tommaso
2021-01-01

Abstract

Extremal length is a classical tool in 1-dimensional complex analysis for building conformal invariants. We propose a higher-dimensional generalization for complex manifolds and provide some ideas on how to estimate and calculate it. We also show how to formulate certain natural geometric inequalities concerning moduli spaces in terms of a complex analogue of the classical Riemannian notion of systole.
2021
31
5073
5093
Pacini, Tommaso
File in questo prodotto:
File Dimensione Formato  
Extremal_JGA.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 257.83 kB
Formato Adobe PDF
257.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1743429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact