Comprehensive two-dimensional gas chromatography (GC×GC) based on flow-modulation (FM) is gaining increasing attention as an alternative to thermal modulation (TM), the recognized GC×GC benchmark, thanks to its lower operational cost and rugged performance. An accessible, rational procedure to perform method translation between the two platforms would be highly valuable to facilitate compatibility and consequently extend the flexibility and applicability of GC×GC. To enable an effective transfer, the methodology needs to ensure preservation of the elution pattern, separation power, and sensitivity. Here, a loop-type thermal modulation system with dual detection (TM-GC×GC-MS/FID) used for the targeted analysis of allergens in fragrances is selected as reference method. Initially, six different columns configurations are systematically evaluated for the flow-modulated counterpart. The set-up providing the most consistent chromatographic separation (20 m x 0.18 mm dc x 0.18 μm df + 1.8 m x 0.18 mm dc x 0.18 μm df) is further evaluated to assess its overall performance in terms of sensitivity, linearity, accuracy, and pattern reliability. The experimental results convincingly show that the method translation procedure is effective and allows successful transfer of the target template metadata. Additionally, the FM-GC×GC-MS/FID system is suitable for challenging applications such as the quantitative profiling of complex fragrance materials.

A step forward in the equivalence between thermal and differential-flow modulated comprehensive two-dimensional gas chromatography methods

Federico Stilo
First
;
Elena Gabetti;Carlo Bicchi;Chiara Cordero
;
2020-01-01

Abstract

Comprehensive two-dimensional gas chromatography (GC×GC) based on flow-modulation (FM) is gaining increasing attention as an alternative to thermal modulation (TM), the recognized GC×GC benchmark, thanks to its lower operational cost and rugged performance. An accessible, rational procedure to perform method translation between the two platforms would be highly valuable to facilitate compatibility and consequently extend the flexibility and applicability of GC×GC. To enable an effective transfer, the methodology needs to ensure preservation of the elution pattern, separation power, and sensitivity. Here, a loop-type thermal modulation system with dual detection (TM-GC×GC-MS/FID) used for the targeted analysis of allergens in fragrances is selected as reference method. Initially, six different columns configurations are systematically evaluated for the flow-modulated counterpart. The set-up providing the most consistent chromatographic separation (20 m x 0.18 mm dc x 0.18 μm df + 1.8 m x 0.18 mm dc x 0.18 μm df) is further evaluated to assess its overall performance in terms of sensitivity, linearity, accuracy, and pattern reliability. The experimental results convincingly show that the method translation procedure is effective and allows successful transfer of the target template metadata. Additionally, the FM-GC×GC-MS/FID system is suitable for challenging applications such as the quantitative profiling of complex fragrance materials.
2020
1627
461396
461400
Two-dimensional comprehensive gas chromatography-mass spectrometry and flame ionization detection Reverse-inject differential flow modulation Suspected fragrance allergens Method translation Method limit of detection Repeatability and precision
Federico Stilo, Elena Gabetti, Carlo Bicchi, Andrea Carretta, Daniela Peroni, Stephen E. Reichenbach, Chiara Cordero, James McCurry
File in questo prodotto:
File Dimensione Formato  
Material OA Iris Translation.pdf

Open Access dal 09/07/2022

Descrizione: post-print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri
final full text.pdf

Accesso riservato

Descrizione: full text
Tipo di file: PDF EDITORIALE
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1744298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact