Tensors co-clustering has been proven useful in many applications, due to its ability of coping with high-dimensional data and sparsity. However, setting up a co-clustering algorithm properly requires the specification of the desired number of clusters for each mode as input parameters. To face this issue, we propose a tensor co-clustering algorithm that does not require the number of desired co-clusters as input, as it optimizes an objective function based on a measure of association across discrete random variables that is not affected by their cardinality. The effectiveness of our algorithm is shown on real-world datasets, also in comparison with state-of-the-art co-clustering methods

Tensor Co-clustering: A Parameter-less Approach

Battaglia, Elena
First
;
Pensa, Ruggero G.
Last
2020-01-01

Abstract

Tensors co-clustering has been proven useful in many applications, due to its ability of coping with high-dimensional data and sparsity. However, setting up a co-clustering algorithm properly requires the specification of the desired number of clusters for each mode as input parameters. To face this issue, we propose a tensor co-clustering algorithm that does not require the number of desired co-clusters as input, as it optimizes an objective function based on a measure of association across discrete random variables that is not affected by their cardinality. The effectiveness of our algorithm is shown on real-world datasets, also in comparison with state-of-the-art co-clustering methods
2020
28th Symposium on Advanced Database Systems (SEBD 2020)
Villasimius, Italy
June 21-24, 2020
Proceedings of the 28th Italian Symposium on Advanced Database Systems,Villasimius, Sud Sardegna, Italy (virtual due to Covid-19 pandemic),June 21-24, 2020
CEUR-WS.org
2646
318
325
http://ceur-ws.org/Vol-2646/11-paper.pdf
clustering, tensor, co-clustering
Battaglia, Elena; Pensa, Ruggero G.
File in questo prodotto:
File Dimensione Formato  
sebd2020_1_online.pdf

Accesso aperto

Descrizione: PDF online (open access)
Tipo di file: PDF EDITORIALE
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1749118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact