Data processing and evaluation are critical steps of comprehensive two-dimensional gas chromatography (GCxGC), particularly when coupled to mass spectrometry. The rich information encrypted in the data may be highly valuable but difficult to access efficiently. Data density and complexity can lead to long elaboration times and require laborious, analyst-dependent procedures. Effective yet accessible data processing tools, therefore, are key to enabling the spread and acceptance of this advanced multidimensional technique in laboratories for daily use. The data analysis protocol presented in this work uses chromatographic fingerprinting and template matching to achieve the goal of highly automated deconstruction of complex two-dimensional chromatograms into individual chemical features for advanced recognition of informative patterns within individual chromatograms and across sets of chromatograms. The protocol delivers high consistency and reliability with little intervention. At the same time, analyst supervision is possible in a variety of settings and constraint functions that can be customized to provide flexibility and capacity to adapt to different needs and goals. Template matching is shown here to be a powerful approach to explore extra-virgin olive oil volatilome. Cross-alignment of peaks is performed not only for known targets, but also for untargeted compounds, which significantly increases the characterization power for a wide range of applications. Examples are presented to evidence the performance for the classification and comparison of chromatographic patterns from sample sets analyzed under similar conditions.

Chromatographic Fingerprinting by Template Matching for Data Collected by Comprehensive Two-Dimensional Gas Chromatography

Federico Stilo
First
;
Chiara Cordero;Carlo Bicchi;
2020-01-01

Abstract

Data processing and evaluation are critical steps of comprehensive two-dimensional gas chromatography (GCxGC), particularly when coupled to mass spectrometry. The rich information encrypted in the data may be highly valuable but difficult to access efficiently. Data density and complexity can lead to long elaboration times and require laborious, analyst-dependent procedures. Effective yet accessible data processing tools, therefore, are key to enabling the spread and acceptance of this advanced multidimensional technique in laboratories for daily use. The data analysis protocol presented in this work uses chromatographic fingerprinting and template matching to achieve the goal of highly automated deconstruction of complex two-dimensional chromatograms into individual chemical features for advanced recognition of informative patterns within individual chromatograms and across sets of chromatograms. The protocol delivers high consistency and reliability with little intervention. At the same time, analyst supervision is possible in a variety of settings and constraint functions that can be customized to provide flexibility and capacity to adapt to different needs and goals. Template matching is shown here to be a powerful approach to explore extra-virgin olive oil volatilome. Cross-alignment of peaks is performed not only for known targets, but also for untargeted compounds, which significantly increases the characterization power for a wide range of applications. Examples are presented to evidence the performance for the classification and comparison of chromatographic patterns from sample sets analyzed under similar conditions.
2020
Inglese
Esperti anonimi
163
e61529
1
20
20
https://www.jove.com/t/61529/chromatographic-fingerprinting-template-matching-for-data-collected
jove.com/video/61529
STATI UNITI D'AMERICA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
6
Federico Stilo, Chiara Cordero, Carlo Bicchi, Daniela Peroni, Qingping Tao, Stephen E. Reichenbach
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Finale Jove full text.pdf

Accesso aperto

Descrizione: full text
Tipo di file: PDF EDITORIALE
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1754502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact