We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a characterization of its Schwartz kernel in terms of phase space estimates. Extending the conormal distributions in the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.

Lagrangian distributions and Fourier integral operators with quadratic phase functions and Shubin amplitudes

Cappiello M.;
2020-01-01

Abstract

We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a characterization of its Schwartz kernel in terms of phase space estimates. Extending the conormal distributions in the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.
2020
56
3
561
602
FBI transform; Fourier integral operator; Lagrangian distribution; Phase space analysis; Shubin amplitude
Cappiello M.; Schulz R.; Wahlberg P.
File in questo prodotto:
File Dimensione Formato  
PRIMSarticolopubblicato.pdf

Accesso riservato

Descrizione: Articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 627.71 kB
Formato Adobe PDF
627.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ShubinFIO57.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 459.46 kB
Formato Adobe PDF
459.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1757145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact