This paper analyses two-player nonzero-sum games of optimal stopping on a class of linear regular diffusions with not nonsingular boundary behaviour [in the sense of Itô andMcKean (Diffusion Processes and Their Sample Paths (1974) Springer, page 108)].We provide sufficient conditions under which Nash equilibria are realised by each player stopping the diffusion at one of the two boundary points of an interval. The boundaries of this interval solve a system of algebraic equations. We also provide conditions sufficient for the uniqueness of the equilibrium in this class.

Nash equilibria of threshold type for two-player nonzero-sum games of stopping

De Angelis T.;
2018-01-01

Abstract

This paper analyses two-player nonzero-sum games of optimal stopping on a class of linear regular diffusions with not nonsingular boundary behaviour [in the sense of Itô andMcKean (Diffusion Processes and Their Sample Paths (1974) Springer, page 108)].We provide sufficient conditions under which Nash equilibria are realised by each player stopping the diffusion at one of the two boundary points of an interval. The boundaries of this interval solve a system of algebraic equations. We also provide conditions sufficient for the uniqueness of the equilibrium in this class.
2018
28
1
112
147
https://arxiv.org/abs/1508.03989
Free boundary problems; Nash equilibrium; Nonzero-sum dynkin games; Regular diffusions; Smooth-fit principle
De Angelis T.; Ferrari G.; Moriarty J.
File in questo prodotto:
File Dimensione Formato  
DeAFeMo(2017)AAP.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 545.76 kB
Formato Adobe PDF
545.76 kB Adobe PDF Visualizza/Apri
DeAngelis-Ferrari-Moriarty(2018)-NZSG.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 371.66 kB
Formato Adobe PDF
371.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1761912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact