We establish that the boundaries of the so-called Rost's reversed barrier are the unique couple of left-continuous monotonic functions solving a suitable system of nonlinear integral equations of Volterra type. Our result holds for atom-less target distributions μ of the related Skorokhod embedding problem. The integral equations we obtain here generalise the ones often arising in optimal stopping literature and our proof of the uniqueness of the solution goes beyond the existing results in the field.

Integral equations for Rost's reversed barriers: Existence and uniqueness results

De Angelis T.;
2017-01-01

Abstract

We establish that the boundaries of the so-called Rost's reversed barrier are the unique couple of left-continuous monotonic functions solving a suitable system of nonlinear integral equations of Volterra type. Our result holds for atom-less target distributions μ of the related Skorokhod embedding problem. The integral equations we obtain here generalise the ones often arising in optimal stopping literature and our proof of the uniqueness of the solution goes beyond the existing results in the field.
2017
127
10
3447
3464
http://arxiv.org/abs/1508.05858
Free-boundary problems; Optimal stopping; Rost's reversed barriers; Skorokhod embedding; Volterra integral equations
De Angelis T.; Kitapbayev Y.
File in questo prodotto:
File Dimensione Formato  
DeAngelis-Kitapbayev(2016).pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 537.34 kB
Formato Adobe PDF
537.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1761963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact