Basing upon multi-agent systems, we show that an explicitrepresentation of accountabilities and responsibility assumptions givesthe right abstractions for properly specifying who should provide feed-back to whom, about the execution of its duties, both at the level ofdesign and at the level of programming. For the latter, we explain a pro-gramming pattern for developing accountable agents, and illustrate theapproach inJaCaMo. The paper takes into account business processes asa motivating scenario.

Engineering Multiagent Organizations by Accountability and Responsibility

Matteo Baldoni;Cristina Baroglio;Roberto Micalizio;Stefano Tedeschi
2019-01-01

Abstract

Basing upon multi-agent systems, we show that an explicitrepresentation of accountabilities and responsibility assumptions givesthe right abstractions for properly specifying who should provide feed-back to whom, about the execution of its duties, both at the level ofdesign and at the level of programming. For the latter, we explain a pro-gramming pattern for developing accountable agents, and illustrate theapproach inJaCaMo. The paper takes into account business processes asa motivating scenario.
2019
Inglese
contributo
1 - Conferenza
Discussion and Doctoral Consortium papers of AI*IA 2019 - 18th International Conference of the Italian Association for Artificial Intelligence
Rende, Italy
November 19-22
Internazionale
M. Alviano, G. Greco, M. Maratea, F. Scarcello
Proc. of Discussion and Doctoral Consortium papers of AI*IA 2019 - 18th International Conference of the Italian Association for Artificial Intelligence
Comitato scientifico
CEUR-WS
Aquisgrana
GERMANIA
12
23
12
http://ceur-ws.org/Vol-2495/paper2.pdf
Accountability, Responsibility, BPMN, JaCaMo
FRANCIA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
5
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio, Stefano Tedeschi
273
open
File in questo prodotto:
File Dimensione Formato  
2019_DDC-AIxIA.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 527.51 kB
Formato Adobe PDF
527.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1762727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact