We prove that, under some integral inequality regarding the mean curvature and the traceless second fundamental form, the set of umbilical points of an immersed surface in a 3-dimensional space form has positive measure. In case of an immersed sphere our result can be seen as a generalization of the celebrated Hopf theorem.

On the umbilic set of immersed surfaces in three-dimensional space forms

Vezzoni L.
2020-01-01

Abstract

We prove that, under some integral inequality regarding the mean curvature and the traceless second fundamental form, the set of umbilical points of an immersed surface in a 3-dimensional space form has positive measure. In case of an immersed sphere our result can be seen as a generalization of the celebrated Hopf theorem.
2020
165
1
7
Hopf theorem; Immersed surfaces; Mean curvature
Catino G.; Roncoroni A.; Vezzoni L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1765844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact