Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making.

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

D'Ascenzo F.
First
;
De Filippo O.;Gallone G.;Mittone G.;Iannaccone M.;Quadri G.;Hughes J. M.;Aldinucci M.;Patti G.;De Ferrari G. M.
Last
;
Iacopo Colonnelli
Membro del Collaboration Group
;
Roberto Esposito
Membro del Collaboration Group
;
Yasir Arfat
Membro del Collaboration Group
;
Francesco Piroli
Membro del Collaboration Group
;
Andrea Saglietto
Membro del Collaboration Group
;
Federico Conrotto
Membro del Collaboration Group
;
Pier Paolo Bocchino
Membro del Collaboration Group
;
Cantalupo Barbara
Membro del Collaboration Group
2021-01-01

Abstract

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0·82 (95% CI 0·78–0·85) in the internal validation cohort and 0·92 (0·90–0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70–0·78) in the internal validation cohort and 0·81 (0·76–0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66–0·75) in the internal validation cohort and 0·86 (0·82–0·89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making.
2021
397
199
207
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)32519-8/
D'Ascenzo F.; De Filippo O.; Gallone G.; Mittone G.; Deriu M.A.; Iannaccone M.; Ariza-Sole A.; Liebetrau C.; Manzano-Fernandez S.; Quadri G.; Kinnaird...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0140673620325198-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 762.9 kB
Formato Adobe PDF
762.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
20201012paper.doc

Accesso aperto

Descrizione: bozza
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 134.5 kB
Formato Microsoft Word
134.5 kB Microsoft Word Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1767072
Citazioni
  • ???jsp.display-item.citation.pmc??? 99
  • Scopus 205
  • ???jsp.display-item.citation.isi??? 183
social impact