This work addresses the problem of learning compact yet discriminative patch descriptors within a deep learning framework. We observe that features extracted by convolutional layers in the pixel domain are largely complementary to features extracted in a transformed domain. We propose a convolutional network framework for learning binary patch descriptors where pixel domain features are fused with features extracted from the transformed domain. In our framework, while convolutional and transformed features are distinctly extracted, they are fused and provided to a single classifier which thus jointly operates on convolutional and transformed features. We experiment at matching patches from three different dataset, showing that our feature fusion approach outperforms multiple state-of-the-art approaches in terms of accuracy, rate and complexity.
Feature Fusion for Robust Patch Matching with Compact Binary Descriptors
Fiandrotti, Attilio
;
2018-01-01
Abstract
This work addresses the problem of learning compact yet discriminative patch descriptors within a deep learning framework. We observe that features extracted by convolutional layers in the pixel domain are largely complementary to features extracted in a transformed domain. We propose a convolutional network framework for learning binary patch descriptors where pixel domain features are fused with features extracted from the transformed domain. In our framework, while convolutional and transformed features are distinctly extracted, they are fused and provided to a single classifier which thus jointly operates on convolutional and transformed features. We experiment at matching patches from three different dataset, showing that our feature fusion approach outperforms multiple state-of-the-art approaches in terms of accuracy, rate and complexity.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
Accesso riservato
Dimensione
781.63 kB
Formato
Adobe PDF
|
781.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
08547141.pdf
Accesso riservato
Dimensione
888.15 kB
Formato
Adobe PDF
|
888.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.