We present an Automatic License Plate Recognition system designed around Convolutional Neural Networks (CNNs) and trained over synthetic plate images. We first design CNNs suitable for plate and character detection, sharing a common architecture and training procedure. Then, we generate synthetic images that account for the varying illumination and pose conditions encountered with real plate images and we use exclusively such synthetic images to train our CNNs. Experiments with real vehicle images captured in natural light with commodity imaging systems show precision and recall in excess of 93% despite our networks are trained exclusively on synthetic images.
Automatic License Plate Recognition with Convolutional Neural Networks Trained on Synthetic Data
FIANDROTTI, ATTILIO
;
2017-01-01
Abstract
We present an Automatic License Plate Recognition system designed around Convolutional Neural Networks (CNNs) and trained over synthetic plate images. We first design CNNs suitable for plate and character detection, sharing a common architecture and training procedure. Then, we generate synthetic images that account for the varying illumination and pose conditions encountered with real plate images and we use exclusively such synthetic images to train our CNNs. Experiments with real vehicle images captured in natural light with commodity imaging systems show precision and recall in excess of 93% despite our networks are trained exclusively on synthetic images.File | Dimensione | Formato | |
---|---|---|---|
08122260.pdf
Accesso riservato
Dimensione
603.49 kB
Formato
Adobe PDF
|
603.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.