Discharge planning is important to prevent surgical site infections, reduce costs, and improve the hospitalization experience. The identification of early variables that can predict a longer-than-expected length of stay or the need for a discharge with additional needs can improve this process. A cohort study was conducted in the largest hospital of Northern Italy, collecting discharge records from January 2017 to January 2020 and pre-admission visits in the last three months. Socio-demographic and clinical data were collected. Linear and logistic regression models were fitted. The main outcomes were the length of stay (LOS) and discharge destination. The main predictors of a longer LOS were the need for additional care at discharge (+10.76 days), hospitalization from the emergency department (ED) (+5.21 days), and age (+0.04 days per year), accounting for clinical variables (p < 0.001 for all variables). Each year of age and hospitalization from the ED were associated with a higher probability of needing additional care at discharge (OR 1.02 and 1.77, respectively, p < 0.001). No additional findings came from pre-admission forms. Discharge difficulties seem to be related mainly to age and hospitalization procedures: those factors are probably masking underlying social risk factors that do not show up in patients with planned admissions.

Predicting length of stay and discharge destination for surgical patients: A cohort study

Bert F.
First
;
Kakaa O.;Corradi A.
;
Siliquini R.
Last
2020

Abstract

Discharge planning is important to prevent surgical site infections, reduce costs, and improve the hospitalization experience. The identification of early variables that can predict a longer-than-expected length of stay or the need for a discharge with additional needs can improve this process. A cohort study was conducted in the largest hospital of Northern Italy, collecting discharge records from January 2017 to January 2020 and pre-admission visits in the last three months. Socio-demographic and clinical data were collected. Linear and logistic regression models were fitted. The main outcomes were the length of stay (LOS) and discharge destination. The main predictors of a longer LOS were the need for additional care at discharge (+10.76 days), hospitalization from the emergency department (ED) (+5.21 days), and age (+0.04 days per year), accounting for clinical variables (p < 0.001 for all variables). Each year of age and hospitalization from the ED were associated with a higher probability of needing additional care at discharge (OR 1.02 and 1.77, respectively, p < 0.001). No additional findings came from pre-admission forms. Discharge difficulties seem to be related mainly to age and hospitalization procedures: those factors are probably masking underlying social risk factors that do not show up in patients with planned admissions.
17
24
1
10
Cohort study; Difficult discharge; Discharge planning; Early prediction; Length of stay; Surgery
Bert F.; Kakaa O.; Corradi A.; Mascaro A.; Roggero S.; Corsi D.; Scarmozzino A.; Siliquini R.
File in questo prodotto:
File Dimensione Formato  
Predicting Length of stay and discharge destination for surgical patients.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 303.19 kB
Formato Adobe PDF
303.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1769765
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact