Recently, Kim, Shiu and Vafa proposed general consistency conditions for six dimensional supergravity theories with minimal supersymmetry coming from couplings to strings. We test them in explicit perturbative orientifold models in order to unravel the microscopic origin of these constraints. Based on the perturbative data, we conjecture the existence of null charges Q∙Q = 0 for any six-dimensional theory with at least one tensor multiplet, coupling to string defects of charge Q. We then include the new constraint to exclude some six-dimensional supersymmetric anomaly-free examples that have currently no string or F-theory realization. We also investigate the constraints from the couplings to string defects in case where supersymmetry is broken in tachyon free vacua, containing non-BPS configurations of brane supersymmetry breaking type, where the breaking is localized on antibranes. In this case, some conditions have naturally to be changed or relaxed whenever the string defects experience supersymmetry breaking, whereas the constraints are still valid if they are geometrically separated from the supersymmetry breaking source.

String defects, supersymmetry and the Swampland

Angelantonj C.;
2020-01-01

Abstract

Recently, Kim, Shiu and Vafa proposed general consistency conditions for six dimensional supergravity theories with minimal supersymmetry coming from couplings to strings. We test them in explicit perturbative orientifold models in order to unravel the microscopic origin of these constraints. Based on the perturbative data, we conjecture the existence of null charges Q∙Q = 0 for any six-dimensional theory with at least one tensor multiplet, coupling to string defects of charge Q. We then include the new constraint to exclude some six-dimensional supersymmetric anomaly-free examples that have currently no string or F-theory realization. We also investigate the constraints from the couplings to string defects in case where supersymmetry is broken in tachyon free vacua, containing non-BPS configurations of brane supersymmetry breaking type, where the breaking is localized on antibranes. In this case, some conditions have naturally to be changed or relaxed whenever the string defects experience supersymmetry breaking, whereas the constraints are still valid if they are geometrically separated from the supersymmetry breaking source.
2020
2020
11
1
48
https://arxiv.org/abs/2007.12722
Anomalies in Field and String Theories; Supergravity Models; Superstring Vacua; Supersymmetry Breaking
Angelantonj C.; Bonnefoy Q.; Condeescu C.; Dudas E.
File in questo prodotto:
File Dimensione Formato  
Angelantonj2020_Article_StringDefectsSupersymmetryAndT.pdf

Accesso aperto

Descrizione: file principale articolo
Tipo di file: PDF EDITORIALE
Dimensione 685.09 kB
Formato Adobe PDF
685.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1769987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact