We present a physically motivated parametrization of the chiral-odd generalized parton distributions. The parametrization is an extension of our previous one in the chiral-even sector which was based on the Reggeized diquark model. While for chiral-even generalized distributions a quantitative fit with uncertainty estimation can be performed using deep inelastic scattering data, nucleon electromagnetic, axial and pseudoscalar form factors measurements, and all available deeply virtual Compton scattering data, the chiral-odd sector is far less constrained. While awaiting the analysis of measurements on pseudoscalar mesons exclusive electroproduction which are key for the extraction of chiral-odd GPDs, we worked out a connection between the chiral-even and chiral-odd reduced helicity amplitudes using parity transformations. The connection works for quark-parton models including both scalar and axial vector diquark models, and spectator models in general. This relation allows us to estimate the size of the various chiral-odd contributions and it opens the way for future quantitative fits.
Flexible parametrization of generalized parton distributions: The chiral-odd sector
Gonzalez-Hernandez, j. o.;
2015-01-01
Abstract
We present a physically motivated parametrization of the chiral-odd generalized parton distributions. The parametrization is an extension of our previous one in the chiral-even sector which was based on the Reggeized diquark model. While for chiral-even generalized distributions a quantitative fit with uncertainty estimation can be performed using deep inelastic scattering data, nucleon electromagnetic, axial and pseudoscalar form factors measurements, and all available deeply virtual Compton scattering data, the chiral-odd sector is far less constrained. While awaiting the analysis of measurements on pseudoscalar mesons exclusive electroproduction which are key for the extraction of chiral-odd GPDs, we worked out a connection between the chiral-even and chiral-odd reduced helicity amplitudes using parity transformations. The connection works for quark-parton models including both scalar and axial vector diquark models, and spectator models in general. This relation allows us to estimate the size of the various chiral-odd contributions and it opens the way for future quantitative fits.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.91.114013(8).pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.