The employment of easily affordable ruthenium(II)-complexes as pre-catalysts in the transfer hydrogenation of carbonyl compounds in deep eutectic media is described for the first time. The eutectic mixture tetrabutylammonium bromide/formic acid = 1/1 (TBABr/HCOOH = 1/1) acts both as reaction medium and hydrogen source. The addition of a base is required for the process to occur. An extensive optimization of the reaction conditions has been carried out, in terms of catalyst loading, type of complexes, H2-donors, reaction temperature and time. The combination of the dimeric complex [RuCl(p-cymene)-μ-Cl]2 (0.01–0.05 eq.) and the ligand dppf (1,1′-ferrocenediyl-bis(diphenylphosphine)ferrocene) in 1/1 molar ratio has proven to be a suitable catalytic system for the reduction of several and diverse aldehydes and ketones to their corresponding alcohols under mild conditions (40–60 °C) in air, showing from moderate to excellent tolerability towards different functional groups (halogen, cyano, nitro, phenol). The reduction of imine compounds to their corresponding amine derivatives was also studied. In addition, the comparison between the results obtained in TBABr/HCOOH and in organic solvents suggests a non-innocent effect of the DES medium during the process.
Deep eutectic solvents as H2-sources for Ru(II)-catalyzed transfer hydrogenation of carbonyl compounds under mild conditions
Cavallo M.First
;Arnodo D.;Mannu A.;Blangetti M.;Prandi C.;Baldino S.
Last
2021-01-01
Abstract
The employment of easily affordable ruthenium(II)-complexes as pre-catalysts in the transfer hydrogenation of carbonyl compounds in deep eutectic media is described for the first time. The eutectic mixture tetrabutylammonium bromide/formic acid = 1/1 (TBABr/HCOOH = 1/1) acts both as reaction medium and hydrogen source. The addition of a base is required for the process to occur. An extensive optimization of the reaction conditions has been carried out, in terms of catalyst loading, type of complexes, H2-donors, reaction temperature and time. The combination of the dimeric complex [RuCl(p-cymene)-μ-Cl]2 (0.01–0.05 eq.) and the ligand dppf (1,1′-ferrocenediyl-bis(diphenylphosphine)ferrocene) in 1/1 molar ratio has proven to be a suitable catalytic system for the reduction of several and diverse aldehydes and ketones to their corresponding alcohols under mild conditions (40–60 °C) in air, showing from moderate to excellent tolerability towards different functional groups (halogen, cyano, nitro, phenol). The reduction of imine compounds to their corresponding amine derivatives was also studied. In addition, the comparison between the results obtained in TBABr/HCOOH and in organic solvents suggests a non-innocent effect of the DES medium during the process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.