Data-And model-driven computer simulations are increasingly critical in many application domains. These simulations may track 10s or 100s of parameters, affected by complex inter-dependent dynamic processes. Moreover, decision makers usually need to run large simulation ensembles, containing 1000s of simulations. In this paper, we rely on a tensor-based framework to represent and analyze patterns in large simulation ensemble data sets to obtain a high-level understanding of the dynamic processes implied by a given ensemble of simulations.We, further, note that the inherent sparsity of the simulation ensembles (relative to the space of potential simulations one can run) constitutes a significant problem in discovering these underlying patterns. To address this challenge, we propose a partition-stitch sampling scheme, which divides the parameter space into subspaces to collect several lower modal ensembles, and complement this with a novel Multi-Task Tensor Decomposition (M2TD), technique which helps effectively and efficiently stitch these subensembles back. Experiments showed that, for a given budget of simulations, the proposed structured sampling scheme leads to significantly better overall accuracy relative to traditional sampling approaches, even when the user does not have a perfect information to help guide the structured partitioning process.

M2td: Multi-task tensor decomposition for sparse ensemble simulations

Sapino M. L.
2018-01-01

Abstract

Data-And model-driven computer simulations are increasingly critical in many application domains. These simulations may track 10s or 100s of parameters, affected by complex inter-dependent dynamic processes. Moreover, decision makers usually need to run large simulation ensembles, containing 1000s of simulations. In this paper, we rely on a tensor-based framework to represent and analyze patterns in large simulation ensemble data sets to obtain a high-level understanding of the dynamic processes implied by a given ensemble of simulations.We, further, note that the inherent sparsity of the simulation ensembles (relative to the space of potential simulations one can run) constitutes a significant problem in discovering these underlying patterns. To address this challenge, we propose a partition-stitch sampling scheme, which divides the parameter space into subspaces to collect several lower modal ensembles, and complement this with a novel Multi-Task Tensor Decomposition (M2TD), technique which helps effectively and efficiently stitch these subensembles back. Experiments showed that, for a given budget of simulations, the proposed structured sampling scheme leads to significantly better overall accuracy relative to traditional sampling approaches, even when the user does not have a perfect information to help guide the structured partitioning process.
2018
34th IEEE International Conference on Data Engineering, ICDE 2018
Parigi
2018
Proceedings - IEEE 34th International Conference on Data Engineering, ICDE 2018
Institute of Electrical and Electronics Engineers Inc.
1156
1167
978-1-5386-5520-7
Simulation; Tensor; Tensor Decomposition
Li X.; Candan K.S.; Sapino M.L.
File in questo prodotto:
File Dimensione Formato  
ICDE2018.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1782486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact