We consider the problem of minimizing variational integrals defined on nonlinear Sobolev spaces of competitors taking values into the sphere. The main novelty is that the underlying energy features a non-uniformly elliptic integrand exhibiting different polynomial growth conditions and no homogeneity. We develop a few intrinsic methods aimed at proving partial regularity of minima and providing techniques for treating larger classes of similar constrained non-uniformly elliptic variational problems. To give estimates for the singular sets, we use a general family of Hausdorff type measures following the local geometry of the integrand. A suitable comparison is provided with respect to the naturally associated capacities.
Manifold Constrained Non-uniformly Elliptic Problems
De Filippis C.;
2020-01-01
Abstract
We consider the problem of minimizing variational integrals defined on nonlinear Sobolev spaces of competitors taking values into the sphere. The main novelty is that the underlying energy features a non-uniformly elliptic integrand exhibiting different polynomial growth conditions and no homogeneity. We develop a few intrinsic methods aimed at proving partial regularity of minima and providing techniques for treating larger classes of similar constrained non-uniformly elliptic variational problems. To give estimates for the singular sets, we use a general family of Hausdorff type measures following the local geometry of the integrand. A suitable comparison is provided with respect to the naturally associated capacities.File | Dimensione | Formato | |
---|---|---|---|
1903.08854.pdf
Accesso riservato
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
546.71 kB
Formato
Adobe PDF
|
546.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.