Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.

Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

Meridiani P.;Amapane N.;Argiro S.;Bellan R.;Bellora A.;Cappati A.;Costa M.;Covarelli R.;Kiani B.;Migliore E.;Monaco V.;Monteil E.;Obertino M. M.;Pacher L.;Angioni G. L. P.;Romero A.;Salvatico R.;Sola V.;Solano A.;Soldi D.;Shchelina K.;Rumerio P.;Ravera F.;
2020-01-01

Abstract

Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
2020
Inglese
Esperti anonimi
15
6
P06005
P06005
88
Large detector-systems performance; Pattern recognition, cluster finding, calibration and fitting methods
FINLANDIA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
2301
Sirunyan A.M.; Tumasyan A.; Adam W.; Ambrogi F.; Bergauer T.; Dragicevic M.; Ero J.; Del Valle A.E.; Flechl M.; Fruhwirth R.; Jeitler M.; Krammer N.; ...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Sirunyan_2020_J._Inst._15_P06005.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1787514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 84
social impact