This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation 'Equation Presented', where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|p-2s with p > 1, and the nonlinear term g(u) = uγ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1 - 2p)/(p - 1)] ∪ ]p - 1, +∞[.
Uniqueness of positive solutions for boundary value problems associated with indefinite φ-Laplacian-type equations
Boscaggin A.;Feltrin G.;Zanolin F.
2021-01-01
Abstract
This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation 'Equation Presented', where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|p-2s with p > 1, and the nonlinear term g(u) = uγ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1 - 2p)/(p - 1)] ∪ ]p - 1, +∞[.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
21BosFelZanOPMATH.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.