This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation 'Equation Presented', where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|p-2s with p > 1, and the nonlinear term g(u) = uγ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1 - 2p)/(p - 1)] ∪ ]p - 1, +∞[.

Uniqueness of positive solutions for boundary value problems associated with indefinite φ-Laplacian-type equations

Boscaggin A.;Feltrin G.;Zanolin F.
2021-01-01

Abstract

This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation 'Equation Presented', where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|p-2s with p > 1, and the nonlinear term g(u) = uγ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1 - 2p)/(p - 1)] ∪ ]p - 1, +∞[.
2021
19
1
163
183
https://arxiv.org/abs/2009.00854
Boundary value problems; Indefinite weight; P-Laplacian; Positive solutions; Singular equations; Superlinear functions; Uniqueness
Boscaggin A.; Feltrin G.; Zanolin F.
File in questo prodotto:
File Dimensione Formato  
21BosFelZanOPMATH.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1789281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact