This paper studies a 2-players zero-sum Dynkin game arising from pricing an option on an asset whose rate of return is unknown to both players. Using filtering techniques we first reduce the problem to a zero-sum Dynkin game on a bi-dimensional diffusion (X, Y ). Then we characterize the existence of a Nash equilibrium in pure strategies in which each player stops at the hitting time of (X, Y ) to a set with moving boundary. A detailed description of the stopping sets for the two players is provided along with global C1 regularity of the value function.

A dynkin game on assets with incomplete information on the return

De Angelis T.;
2021-01-01

Abstract

This paper studies a 2-players zero-sum Dynkin game arising from pricing an option on an asset whose rate of return is unknown to both players. Using filtering techniques we first reduce the problem to a zero-sum Dynkin game on a bi-dimensional diffusion (X, Y ). Then we characterize the existence of a Nash equilibrium in pure strategies in which each player stops at the hitting time of (X, Y ) to a set with moving boundary. A detailed description of the stopping sets for the two players is provided along with global C1 regularity of the value function.
2021
46
1
28
60
Free boundaries; Incomplete information; Nash equilibrium; Zero-sum games
De Angelis T.; Gensbittel F.; Villeneuve S.
File in questo prodotto:
File Dimensione Formato  
DeAngelis-Gensbittel-Villeneuve-4th-revision.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 763.53 kB
Formato Adobe PDF
763.53 kB Adobe PDF Visualizza/Apri
DeAngelis-Gensbittel-Villeneuve(2020).pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 997.46 kB
Formato Adobe PDF
997.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1795372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact