The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs [Krishnendu Chatterjee et al., 2015]. It has since proved useful in a variety of settings, including parity objectives in games [Véronique Bruyère et al., 2016] and both mean-payoff and parity objectives in Markov decision processes [Thomas Brihaye et al., 2020]. We study window parity objectives in timed automata and timed games: given a bound on the window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently small window in which the smallest priority is even. We show that checking that all time-divergent paths of a timed automaton satisfy such a window parity objective can be done in polynomial space, and that the corresponding timed games can be solved in exponential time. This matches the complexity class of timed parity games, while adding the ability to reason about time bounds. We also consider multi-dimensional objectives and show that the complexity class does not increase. To the best of our knowledge, this is the first study of the window mechanism in a real-time setting.

Time Flies When Looking out of the Window: Timed Games with Window Parity Objectives

Jeremy Sproston
2021-01-01

Abstract

The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs [Krishnendu Chatterjee et al., 2015]. It has since proved useful in a variety of settings, including parity objectives in games [Véronique Bruyère et al., 2016] and both mean-payoff and parity objectives in Markov decision processes [Thomas Brihaye et al., 2020]. We study window parity objectives in timed automata and timed games: given a bound on the window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently small window in which the smallest priority is even. We show that checking that all time-divergent paths of a timed automaton satisfy such a window parity objective can be done in polynomial space, and that the corresponding timed games can be solved in exponential time. This matches the complexity class of timed parity games, while adding the ability to reason about time bounds. We also consider multi-dimensional objectives and show that the complexity class does not increase. To the best of our knowledge, this is the first study of the window mechanism in a real-time setting.
2021
Inglese
contributo
1 - Conferenza
32nd International Conference on Concurrency Theory (CONCUR 2021)
Paris, France
24/08/2021 - 27/08/2021
Internazionale
Serge Haddad and Daniele Varacca
Proceedings of the 32nd International Conference on Concurrency Theory (CONCUR 2021)
Esperti anonimi
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Saarbruecken
GERMANIA
203
1
16
16
978-3-95977-203-7
https://drops.dagstuhl.de/opus/volltexte/2021/14402/
Window objectives, timed automata, timed games, parity games
BELGIO
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
3
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
James C. A. Main, Mickael Randour, Jeremy Sproston
273
open
File in questo prodotto:
File Dimensione Formato  
LIPIcs-CONCUR-2021-25.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 700.67 kB
Formato Adobe PDF
700.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1800595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact