We consider the Brezis-Nirenberg problem 1u = u + |u|p1u in , u = 0 on @, where is a smooth bounded domain in RN, N 3, p = NN+22 and > 0. We prove that, if is symmetric and N = 4, 5, there exists a sign-changing solution whose positive part concentrates and blowsup at the center of symmetry of the domain, while the negative part vanishes, as ! 1, where 1 = 1() denotes the first eigenvalue of 1 on , with zero Dirichlet boundary condition.

Sign-changing blowing-up solutions for the Brezis–Nirenberg problem in dimensions four and five

Iacopetti A.;
2018-01-01

Abstract

We consider the Brezis-Nirenberg problem 1u = u + |u|p1u in , u = 0 on @, where is a smooth bounded domain in RN, N 3, p = NN+22 and > 0. We prove that, if is symmetric and N = 4, 5, there exists a sign-changing solution whose positive part concentrates and blowsup at the center of symmetry of the domain, while the negative part vanishes, as ! 1, where 1 = 1() denotes the first eigenvalue of 1 on , with zero Dirichlet boundary condition.
2018
18
1
1
38
Iacopetti A.; Vaira G.
File in questo prodotto:
File Dimensione Formato  
Sign-changing_Blowing_BN_Dim4_5_postprint.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 438.05 kB
Formato Adobe PDF
438.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1804373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact