Background: In a randomized controlled trial (RCT) with binary outcome the estimate of the marginal treatment effect can be biased by prognostic baseline covariates adjustment. Methods that target the marginal odds ratio, allowing for improved precision and power, have been devel-oped. Methods: The performance of different estimators for the treatment effect in the frequentist (targeted maximum likelihood estimator, inverse-probability-of-treatment weighting, parametric G-computation, and the semiparametric locally efficient estimator) and Bayesian (model averaging), adjustment for confounding, and generalized Bayesian causal effect estimation frameworks are assessed and compared in a simulation study under different scenarios. The use of these estimators is illustrated on an RCT in type II diabetes. Results: Model mis-specification does not increase the bias. The approaches that are not doubly robust have increased standard error (SE) under the scenario of mis-specification of the treatment model. The Bayesian estimators showed a higher type II error than frequentist estimators if noisy covariates are included in the treatment model. Conclusions: Adjusting for prognostic baseline covariates in the analysis of RCTs can have more power than intention-to-treat based tests. However, for some classes of model, when the regression model is mis-specified, inflated type I error and potential bias on treatment effect estimate may arise.

Adjustment for baseline covariates to increase efficiency in RCTs with binary endpoint: A comparison of bayesian and frequentist approaches

Berchialla P.
;
Sciannameo V.;
2021-01-01

Abstract

Background: In a randomized controlled trial (RCT) with binary outcome the estimate of the marginal treatment effect can be biased by prognostic baseline covariates adjustment. Methods that target the marginal odds ratio, allowing for improved precision and power, have been devel-oped. Methods: The performance of different estimators for the treatment effect in the frequentist (targeted maximum likelihood estimator, inverse-probability-of-treatment weighting, parametric G-computation, and the semiparametric locally efficient estimator) and Bayesian (model averaging), adjustment for confounding, and generalized Bayesian causal effect estimation frameworks are assessed and compared in a simulation study under different scenarios. The use of these estimators is illustrated on an RCT in type II diabetes. Results: Model mis-specification does not increase the bias. The approaches that are not doubly robust have increased standard error (SE) under the scenario of mis-specification of the treatment model. The Bayesian estimators showed a higher type II error than frequentist estimators if noisy covariates are included in the treatment model. Conclusions: Adjusting for prognostic baseline covariates in the analysis of RCTs can have more power than intention-to-treat based tests. However, for some classes of model, when the regression model is mis-specified, inflated type I error and potential bias on treatment effect estimate may arise.
2021
18
15
7758
7766
Causal inference; Doubly robust estimation; Propensity score; Randomized controlled trial; Bias; Causality; Computer Simulation; Humans; Probability; Models, Statistical
Berchialla P.; Sciannameo V.; Urru S.; Lanera C.; Azzolina D.; Gregori D.; Baldi I.
File in questo prodotto:
File Dimensione Formato  
Berchialla et al 2021 - Adjustment baseline covariates - IJERPH.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 461.34 kB
Formato Adobe PDF
461.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1807903
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact