Purpose: This study aimed to unravel the genetic factors underlying missing heritability in spinocerebellar ataxia type 17 (SCA17) caused by polyglutamine-encoding CAG/CAA repeat expansions in the TBP gene. Alleles with >49 CAG/CAA repeats are fully penetrant. Most patients, however, carry intermediate TBP41-49 alleles that show incomplete penetrance. Methods: Using next-generation sequencing approaches, we investigated 40 SCA17/TBP41-54 index patients, their affected (n = 55) and unaffected (n = 51) relatives, and a cohort of patients with ataxia (n = 292). Results: All except 1 (30/31) of the index cases with TBP41-46 alleles carried a heterozygous pathogenic variant in the STUB1 gene associated with spinocerebellar ataxias SCAR16 (autosomal recessive) and SCA48 (autosomal dominant). No STUB1 variant was found in patients carrying TBP47-54 alleles. TBP41-46 expansions and STUB1 variants cosegregate in all affected family members, whereas the presence of either TBP41-46 expansions or STUB1 variants individually was never associated with the disease. Conclusion: Our data reveal an unexpected genetic interaction between STUB1 and TBP in the pathogenesis of SCA17 and raise questions on the existence of SCA48 as a monogenic disease with crucial implications for diagnosis and counseling. They provide a convincing explanation for the incomplete penetrance of intermediate TBP alleles and demonstrate a dual inheritance pattern for SCA17, which is a monogenic dominant disorder for TBP≥47 alleles and a digenic TBP/STUB1 disease (SCA17-DI) for intermediate expansions.
Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the incomplete penetrance of SCA17 and SCA48
Cortelli, Pietro;Brusco, Alfredo;
2022-01-01
Abstract
Purpose: This study aimed to unravel the genetic factors underlying missing heritability in spinocerebellar ataxia type 17 (SCA17) caused by polyglutamine-encoding CAG/CAA repeat expansions in the TBP gene. Alleles with >49 CAG/CAA repeats are fully penetrant. Most patients, however, carry intermediate TBP41-49 alleles that show incomplete penetrance. Methods: Using next-generation sequencing approaches, we investigated 40 SCA17/TBP41-54 index patients, their affected (n = 55) and unaffected (n = 51) relatives, and a cohort of patients with ataxia (n = 292). Results: All except 1 (30/31) of the index cases with TBP41-46 alleles carried a heterozygous pathogenic variant in the STUB1 gene associated with spinocerebellar ataxias SCAR16 (autosomal recessive) and SCA48 (autosomal dominant). No STUB1 variant was found in patients carrying TBP47-54 alleles. TBP41-46 expansions and STUB1 variants cosegregate in all affected family members, whereas the presence of either TBP41-46 expansions or STUB1 variants individually was never associated with the disease. Conclusion: Our data reveal an unexpected genetic interaction between STUB1 and TBP in the pathogenesis of SCA17 and raise questions on the existence of SCA48 as a monogenic disease with crucial implications for diagnosis and counseling. They provide a convincing explanation for the incomplete penetrance of intermediate TBP alleles and demonstrate a dual inheritance pattern for SCA17, which is a monogenic dominant disorder for TBP≥47 alleles and a digenic TBP/STUB1 disease (SCA17-DI) for intermediate expansions.File | Dimensione | Formato | |
---|---|---|---|
181. STUB1_TBP_GenMed2021.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
Klein and Bloem - 2023 - Research in movement disorders in 2022 a new era .pdf
Accesso riservato
Descrizione: Editoriale che cita il lavoro
Tipo di file:
PDF EDITORIALE
Dimensione
103.99 kB
Formato
Adobe PDF
|
103.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.