In this paper, we provide a new characterization of Keisler’s order in terms of saturation of Boolean ultrapowers. To do so, we apply and expand the framework of ‘separation of variables’ recently developed by Malliaris and Shelah. We also show that good ultrafilters on Boolean algebras are precisely the ones which capture the maximum class in Keisler’s order, answering a question posed by Benda in 1974.

Keisler’s order via Boolean ultrapowers

Parente F.
2021-01-01

Abstract

In this paper, we provide a new characterization of Keisler’s order in terms of saturation of Boolean ultrapowers. To do so, we apply and expand the framework of ‘separation of variables’ recently developed by Malliaris and Shelah. We also show that good ultrafilters on Boolean algebras are precisely the ones which capture the maximum class in Keisler’s order, answering a question posed by Benda in 1974.
2021
60
3-4
425
439
Boolean ultrapower; Good ultrafilter; Keisler’s order; Regular ultrafilter
Parente F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1831497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact