In this paper we start by pointing out that Yoneda's notion of a regular span S:X→A×B can be interpreted as a special kind of morphism, that we call fiberwise opfibration, in the 2-category Fib(A). We study the relationship between these notions and those of internal opfibration and two-sided fibration. This fibrational point of view makes it possible to interpret Yoneda's Classification Theorem given in his 1960 paper as the result of a canonical factorization, and to extend it to a non-symmetric situation, where the fibration given by the product projection Pr0:A×B→A is replaced by any split fibration over A. This new setting allows us to transfer Yoneda's theory of extensions to the non-additive analog given by crossed extensions for the cases of groups and other algebraic structures.
Fibered aspects of Yoneda's regular span
Cigoli A. S.
;
2020-01-01
Abstract
In this paper we start by pointing out that Yoneda's notion of a regular span S:X→A×B can be interpreted as a special kind of morphism, that we call fiberwise opfibration, in the 2-category Fib(A). We study the relationship between these notions and those of internal opfibration and two-sided fibration. This fibrational point of view makes it possible to interpret Yoneda's Classification Theorem given in his 1960 paper as the result of a canonical factorization, and to extend it to a non-symmetric situation, where the fibration given by the product projection Pr0:A×B→A is replaced by any split fibration over A. This new setting allows us to transfer Yoneda's theory of extensions to the non-additive analog given by crossed extensions for the cases of groups and other algebraic structures.File | Dimensione | Formato | |
---|---|---|---|
Yoneda_ext_aim_final.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
508.11 kB
Formato
Adobe PDF
|
508.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.