In a semi-abelian category, we give a categorical construction of the push forward of an internal pre-crossed module, generalizing the pushout of a short exact sequence in abelian categories. The main properties of the push forward are discussed. A simplified version is given for action accessible categories, providing examples in the categories of rings and Lie algebras. We show that push forwards can be used to obtain the crossed module version of the comprehensive factorization for internal groupoids.
A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules
Cigoli A. S.;
2014-01-01
Abstract
In a semi-abelian category, we give a categorical construction of the push forward of an internal pre-crossed module, generalizing the pushout of a short exact sequence in abelian categories. The main properties of the push forward are discussed. A simplified version is given for action accessible categories, providing examples in the categories of rings and Lie algebras. We show that push forwards can be used to obtain the crossed module version of the comprehensive factorization for internal groupoids.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
pf final-2.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
347.09 kB
Formato
Adobe PDF
|
347.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



