We introduce a class of time-periodic Gelfand-Shilov spaces of functions on $mathbb{T} imes mathbb{R}^n$, where mathbb{T} sim mathbb{R}/2pi mathbb{Z}$ is the one-dimensional torus. We develop a Fourier analysis inspired by the characterization of the Gelfand-Shilov spaces in terms of the eigenfunction expansions given by a fixed normal, globally elliptic differential operator on $mathbb{R}^n$. In this setting, as an application, we characterize the global hypoellipticity for a class of linear differential evolution operators on $mathbb{T} imes mathbb{R}^n$.
Time-periodic Gelfand-Shilov spaces and global hypoellipticity on T×R^n
Cappiello M.
2022-01-01
Abstract
We introduce a class of time-periodic Gelfand-Shilov spaces of functions on $mathbb{T} imes mathbb{R}^n$, where mathbb{T} sim mathbb{R}/2pi mathbb{Z}$ is the one-dimensional torus. We develop a Fourier analysis inspired by the characterization of the Gelfand-Shilov spaces in terms of the eigenfunction expansions given by a fixed normal, globally elliptic differential operator on $mathbb{R}^n$. In this setting, as an application, we characterize the global hypoellipticity for a class of linear differential evolution operators on $mathbb{T} imes mathbb{R}^n$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
484.12 kB
Formato
Adobe PDF
|
484.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cappiello_Avila_arxivversion.pdf
Open Access dal 04/02/2024
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
473.1 kB
Formato
Adobe PDF
|
473.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.