We deal with non negative functions which are s-harmonic on a given cone of the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary. We consider the case when the parameter s approaches 1, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.

On s-harmonic functions on cones funzioni s-armoniche su coni

Vita S.
2019-01-01

Abstract

We deal with non negative functions which are s-harmonic on a given cone of the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary. We consider the case when the parameter s approaches 1, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.
2019
10
28
41
Asymptotic behavior; Conic functions; Fractional Laplacian; Martin kernel
Vita S.
File in questo prodotto:
File Dimensione Formato  
1_Vita.pdf

Accesso riservato

Dimensione 291.51 kB
Formato Adobe PDF
291.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1847427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact