Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein– protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.

Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants

Vigani G.
;
2022-01-01

Abstract

Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein– protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.
2022
11
1
1
17
Co-expression; Mitochondrion; Network; PPI; Proteomics; Quinoa; Systems biology; Virus
Di Silvestre D.; Passignani G.; Rossi R.; Ciuffo M.; Turina M.; Vigani G.; Mauri P.L.
File in questo prodotto:
File Dimensione Formato  
Di Silvestre et al 2022_biology-11-00095.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1848669
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact