Intensive care unit- (ICU-) acquired infections are a major health problem worldwide. Inanimate surfaces and equipment contamination may play a role in cross-transmission of pathogens and subsequent patient colonization or infection. Bacteria contaminate inanimate surfaces and equipment of the patient zone and healthcare area, generating a reservoir of potential pathogens, including multidrug resistant species. Traditional terminal cleaning methods have limitations. Indeed patients who receive a bed from prior patient carrying bacteria are exposed to an increased risk (odds ratio 2.13, 95% confidence intervals 1.62-2.81) of being colonized and potentially infected by the same bacterial species of the previous patient. Biofilm formation, even on dry surfaces, may play a role in reducing the efficacy of terminal cleaning procedures since it enables bacteria to survive in the environment for a long period and provides increased resistance to commonly used disinfectants. No-touch methods (e.g., UV-light, hydrogen peroxide vapour) are under investigation and further studies with patient-centred outcomes are needed, before considering them the standard of terminal cleaning in ICUs. Healthcare workers should be aware of the role of environmental contamination in the ICU and consider it in the broader perspective of infection control measures and stewardship initiatives.

What Healthcare Workers Should Know about Environmental Bacterial Contamination in the Intensive Care Unit

Russotto V.
First
;
2017-01-01

Abstract

Intensive care unit- (ICU-) acquired infections are a major health problem worldwide. Inanimate surfaces and equipment contamination may play a role in cross-transmission of pathogens and subsequent patient colonization or infection. Bacteria contaminate inanimate surfaces and equipment of the patient zone and healthcare area, generating a reservoir of potential pathogens, including multidrug resistant species. Traditional terminal cleaning methods have limitations. Indeed patients who receive a bed from prior patient carrying bacteria are exposed to an increased risk (odds ratio 2.13, 95% confidence intervals 1.62-2.81) of being colonized and potentially infected by the same bacterial species of the previous patient. Biofilm formation, even on dry surfaces, may play a role in reducing the efficacy of terminal cleaning procedures since it enables bacteria to survive in the environment for a long period and provides increased resistance to commonly used disinfectants. No-touch methods (e.g., UV-light, hydrogen peroxide vapour) are under investigation and further studies with patient-centred outcomes are needed, before considering them the standard of terminal cleaning in ICUs. Healthcare workers should be aware of the role of environmental contamination in the ICU and consider it in the broader perspective of infection control measures and stewardship initiatives.
2017
2017
1
7
Russotto V.; Cortegiani A.; Fasciana T.; Iozzo P.; Raineri S.M.; Gregoretti C.; Giammanco A.; Giarratano A.
File in questo prodotto:
File Dimensione Formato  
russotto2017 healthcare (1).pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1850408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact