Let $X$ be a smooth complex projective variety and let $Z = (s = 0)$ be a smooth submanifold which is the zero locus of a section of an ample vector bundle $mathcal E$ of rank $r$ with $dim Z = dim X - r$. We show with some examples that in general the Kleiman--Mori cones $overline{{ m NE}(Z)}$ and $overline{{ m NE}(X)}$ are different. We then give a necessary and sufficient condition for an extremal ray in $overline{{ m NE}(X)}$ to be also extremal in $overline{{ m NE}(Z)}$. We apply this result to the case $r = 1$ and $Z$ a Fano manifold of high index; in particular we classify all $X$ with an ample divisor which is a Mukai manifold of dimension $geq 4$. In the last section we prove a general result in case $Z$ is a minimal variety with $0 leq kappa (Z) < dim Z$.
Connections between the geometry of a projective variety and of an ample section
NOVELLI, CARLA;
2006-01-01
Abstract
Let $X$ be a smooth complex projective variety and let $Z = (s = 0)$ be a smooth submanifold which is the zero locus of a section of an ample vector bundle $mathcal E$ of rank $r$ with $dim Z = dim X - r$. We show with some examples that in general the Kleiman--Mori cones $overline{{ m NE}(Z)}$ and $overline{{ m NE}(X)}$ are different. We then give a necessary and sufficient condition for an extremal ray in $overline{{ m NE}(X)}$ to be also extremal in $overline{{ m NE}(Z)}$. We apply this result to the case $r = 1$ and $Z$ a Fano manifold of high index; in particular we classify all $X$ with an ample divisor which is a Mukai manifold of dimension $geq 4$. In the last section we prove a general result in case $Z$ is a minimal variety with $0 leq kappa (Z) < dim Z$.| File | Dimensione | Formato | |
|---|---|---|---|
|
001-preconi.pdf
Accesso aperto
Descrizione: preprint
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
202.47 kB
Formato
Adobe PDF
|
202.47 kB | Adobe PDF | Visualizza/Apri |
|
02 - 2006 - ANO - Connections Variety and Ample Section.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
415.72 kB
Formato
Adobe PDF
|
415.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



