Let $X$ be a smooth complex projective variety and let $Z = (s = 0)$ be a smooth submanifold which is the zero locus of a section of an ample vector bundle $mathcal E$ of rank $r$ with $dim Z = dim X - r$. We show with some examples that in general the Kleiman--Mori cones $overline{{ m NE}(Z)}$ and $overline{{ m NE}(X)}$ are different. We then give a necessary and sufficient condition for an extremal ray in $overline{{ m NE}(X)}$ to be also extremal in $overline{{ m NE}(Z)}$. We apply this result to the case $r = 1$ and $Z$ a Fano manifold of high index; in particular we classify all $X$ with an ample divisor which is a Mukai manifold of dimension $geq 4$. In the last section we prove a general result in case $Z$ is a minimal variety with $0 leq kappa (Z) < dim Z$.

Connections between the geometry of a projective variety and of an ample section

NOVELLI, CARLA;
2006-01-01

Abstract

Let $X$ be a smooth complex projective variety and let $Z = (s = 0)$ be a smooth submanifold which is the zero locus of a section of an ample vector bundle $mathcal E$ of rank $r$ with $dim Z = dim X - r$. We show with some examples that in general the Kleiman--Mori cones $overline{{ m NE}(Z)}$ and $overline{{ m NE}(X)}$ are different. We then give a necessary and sufficient condition for an extremal ray in $overline{{ m NE}(X)}$ to be also extremal in $overline{{ m NE}(Z)}$. We apply this result to the case $r = 1$ and $Z$ a Fano manifold of high index; in particular we classify all $X$ with an ample divisor which is a Mukai manifold of dimension $geq 4$. In the last section we prove a general result in case $Z$ is a minimal variety with $0 leq kappa (Z) < dim Z$.
2006
279
1387
1395
http://onlinelibrary.wiley.com/doi/10.1002/mana.200410427/abstract;jsessionid=C43C2C4FBD5D78E3EAF77B3B9205669A.d01t04
Mori-Kleiman cone; extremal rays; adjunction theory
M. Andreatta; NOVELLI, CARLA; G. Occhetta
File in questo prodotto:
File Dimensione Formato  
001-preconi.pdf

Accesso aperto

Descrizione: preprint
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 202.47 kB
Formato Adobe PDF
202.47 kB Adobe PDF Visualizza/Apri
02 - 2006 - ANO - Connections Variety and Ample Section.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 415.72 kB
Formato Adobe PDF
415.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1852296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact