Using the $sharp$-minimal model program of uniruled varieties we show that, for any pair $(X, {mathcal H})$ consisting of a reduced and irreducible variety $X$ of dimension $k geq 3$ and a globally generated big line bundle ${mathcal H}$ on $X$ with $d:= {mathcal H}^k$ and $n:= h^0(X, {mathcal H})-1$ such that $d<2(n-k)-4$, then $X$ is uniruled of ${mathcal H}$-degree one, except if $(k,d,n)=(3,27,19)$ and a ${sharp}$-minimal model of $(X, {mathcal H})$ is $({mathbb P}^3,{mathcal O}_{{mathbb P}^3}(3))$. We also show that the bound is optimal for threefolds.

On varieties that are uniruled by lines

NOVELLI, CARLA;
2006-01-01

Abstract

Using the $sharp$-minimal model program of uniruled varieties we show that, for any pair $(X, {mathcal H})$ consisting of a reduced and irreducible variety $X$ of dimension $k geq 3$ and a globally generated big line bundle ${mathcal H}$ on $X$ with $d:= {mathcal H}^k$ and $n:= h^0(X, {mathcal H})-1$ such that $d<2(n-k)-4$, then $X$ is uniruled of ${mathcal H}$-degree one, except if $(k,d,n)=(3,27,19)$ and a ${sharp}$-minimal model of $(X, {mathcal H})$ is $({mathbb P}^3,{mathcal O}_{{mathbb P}^3}(3))$. We also show that the bound is optimal for threefolds.
2006
142
889
906
http://journals.cambridge.org/action/displayAbstract?fromPage=online&amp;aid=454146
minimal model program; rational curves; 3-folds; n-folds; linear systems
A. L. Knutsen; NOVELLI, CARLA; A. Sarti
File in questo prodotto:
File Dimensione Formato  
01 - 2006 - KNS - Varieties Uniruled by Lines.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 368.15 kB
Formato Adobe PDF
368.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
004-UniruledVarieties.pdf

Accesso aperto

Descrizione: postprint
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 384.88 kB
Formato Adobe PDF
384.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1852297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact