Let $X$ be a smooth complex projective variety and let $L$ be a line bundle on it. We describe the structure of the pre-polarized manifold $(X,L)$ for non integral values of the invariant $ au_L(R):=-K_XcdotGamma/(L cdot Gamma)$, where $Gamma$ is a minimal curve of an extremal ray $R:=mathbb R_+[Gamma]$ on $X$ such that $L cdot R>0$.
Extremal rays of non-integral $L$-length
NOVELLI, CARLA
2013-01-01
Abstract
Let $X$ be a smooth complex projective variety and let $L$ be a line bundle on it. We describe the structure of the pre-polarized manifold $(X,L)$ for non integral values of the invariant $ au_L(R):=-K_XcdotGamma/(L cdot Gamma)$, where $Gamma$ is a minimal curve of an extremal ray $R:=mathbb R_+[Gamma]$ on $X$ such that $L cdot R>0$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
14 - 2013 - N3 - Extremal Rays Non-integral L-length.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
758.22 kB
Formato
Adobe PDF
|
758.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.