: Antibody-based anti-cancer therapy is considered a successful approach to impair tumour progression. This study aimed to investigate the clinical impact of targeting the IL-3 signalling in the microenvironment of solid tumours. We intended to investigate whether the IL-3Rα blockade on tumour-derived endothelial cells (TEC) can modulate PD-L1 expression in tumour cells and peripheral blood mononuclear cells (PBMC) to reshape the anti-tumour immune response. Extracellular vesicles released by TEC after IL-3Rα blockade (aTEV) were used as the ultimate effectors of the antibody-based approach, while naive TEC-derived extracellular vesicles (nTEV) served as control. Firstly, we demonstrated that, either directly or indirectly via nTEV, IL-3 controls the expression of its receptor on TEC and PBMC respectively. Moreover, we found that nTEV, moulded by the autocrine secretion of IL-3, increased PD-L1 expression in myeloid cells both in vitro and in vivo. In addition, we found that nTEV-primed PBMC favour tumour cell growth (TEC and MDA-MB-231 cells), whereas PBMC-primed with aTEV still retain their anti-tumour properties. Isolated T-cells pre-conditioned with nTEV or aTEV and co-cultured with TEC or MDA-MB-231 cells have no effects, thereby sustaining the key role of myeloid cells in tumour immune editing. In vivo nTEV, but not aTEV, increased the expression of PD-L1 in primary tumours, lung and liver metastases. Finally, we demonstrated that the enrichment of miR-214 in aTEV impacts on PD-L1 expression in vivo. Overall, these data indicate that an approach based on IL-3Rα blockade in TEC rearranges EV cargo and may reshape the anti-tumour immune response.

IL-3 signalling in the tumour microenvironment shapes the immune response via tumour endothelial cell-derived extracellular vesicles

Lopatina, Tatiana;Koni, Malvina;Grange, Cristina;Cedrino, Massimo;Femminò, Saveria;Lombardo, Giusy;Favaro, Enrica;Brizzi, Maria Felice
2022-01-01

Abstract

: Antibody-based anti-cancer therapy is considered a successful approach to impair tumour progression. This study aimed to investigate the clinical impact of targeting the IL-3 signalling in the microenvironment of solid tumours. We intended to investigate whether the IL-3Rα blockade on tumour-derived endothelial cells (TEC) can modulate PD-L1 expression in tumour cells and peripheral blood mononuclear cells (PBMC) to reshape the anti-tumour immune response. Extracellular vesicles released by TEC after IL-3Rα blockade (aTEV) were used as the ultimate effectors of the antibody-based approach, while naive TEC-derived extracellular vesicles (nTEV) served as control. Firstly, we demonstrated that, either directly or indirectly via nTEV, IL-3 controls the expression of its receptor on TEC and PBMC respectively. Moreover, we found that nTEV, moulded by the autocrine secretion of IL-3, increased PD-L1 expression in myeloid cells both in vitro and in vivo. In addition, we found that nTEV-primed PBMC favour tumour cell growth (TEC and MDA-MB-231 cells), whereas PBMC-primed with aTEV still retain their anti-tumour properties. Isolated T-cells pre-conditioned with nTEV or aTEV and co-cultured with TEC or MDA-MB-231 cells have no effects, thereby sustaining the key role of myeloid cells in tumour immune editing. In vivo nTEV, but not aTEV, increased the expression of PD-L1 in primary tumours, lung and liver metastases. Finally, we demonstrated that the enrichment of miR-214 in aTEV impacts on PD-L1 expression in vivo. Overall, these data indicate that an approach based on IL-3Rα blockade in TEC rearranges EV cargo and may reshape the anti-tumour immune response.
2022
179
106206
106216
Extracellular vesicles; IL-3; PD-L1; Tumour endothelial cells; Tumour immune editing; Tumour microenvironment
Lopatina, Tatiana; Koni, Malvina; Grange, Cristina; Cedrino, Massimo; Femminò, Saveria; Lombardo, Giusy; Favaro, Enrica; Brizzi, Maria Felice
File in questo prodotto:
File Dimensione Formato  
PharmRes2022.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 11.17 MB
Formato Adobe PDF
11.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1857664
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact