A realistic assessment of the uncertainties in the even zonals of a given geopotential model must be made by directly comparing its coefficients with those of a wholly independent solution of superior formal accuracy. Otherwise, a favorable selective bias is introduced in the evaluation of the total error budget of the LAGEOS-based Lense-Thirring tests yielding likely too optimistic figures for it. By applying a novel approach which recently appeared in the literature, the second (ℓ=4) and the third (ℓ=6) even zonals turn out to be uncertain at a 2-3×10-11(ℓ=4) and 3-4×10 -11(ℓ=6) level, respectively, yielding a total gravitational error of about 27-28%, with an upper bound of 37-39%. The results by Ries et al. themselves yield an upper bound for it of about 33%. The low-degree even zonals are not exclusively determined from the GRACE Satellite-to-Satellite Tracking (SST) range since they affect it with long-period, secular-like signatures over orbital arcs longer than one orbital period: GRACE SST is not accurately sensitive to such signals. Conversely, general relativity affects it with short-period effects as well. Thus, the issue of the a priori "imprinting" of general relativity itself in the GRACE-based models used so far remains open. © 2013 Elsevier Ltd. All rights reserved.

Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models

Ruggiero Matteo Luca;
2013-01-01

Abstract

A realistic assessment of the uncertainties in the even zonals of a given geopotential model must be made by directly comparing its coefficients with those of a wholly independent solution of superior formal accuracy. Otherwise, a favorable selective bias is introduced in the evaluation of the total error budget of the LAGEOS-based Lense-Thirring tests yielding likely too optimistic figures for it. By applying a novel approach which recently appeared in the literature, the second (ℓ=4) and the third (ℓ=6) even zonals turn out to be uncertain at a 2-3×10-11(ℓ=4) and 3-4×10 -11(ℓ=6) level, respectively, yielding a total gravitational error of about 27-28%, with an upper bound of 37-39%. The results by Ries et al. themselves yield an upper bound for it of about 33%. The low-degree even zonals are not exclusively determined from the GRACE Satellite-to-Satellite Tracking (SST) range since they affect it with long-period, secular-like signatures over orbital arcs longer than one orbital period: GRACE SST is not accurately sensitive to such signals. Conversely, general relativity affects it with short-period effects as well. Thus, the issue of the a priori "imprinting" of general relativity itself in the GRACE-based models used so far remains open. © 2013 Elsevier Ltd. All rights reserved.
2013
91
141
148
http://arxiv.org/abs/1307.0753v1
Experimental studies of gravity; Experimental tests of gravitational theories; Harmonics of the gravity potential field; Satellite orbits; General Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.EP; Physics - Geophysics; Physics - Space Physics
Iorio Lorenzo; Ruggiero Matteo Luca; Corda Christian
File in questo prodotto:
File Dimensione Formato  
Acta Astronaut. 91 (2013) 141-148.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 353.96 kB
Formato Adobe PDF
353.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1858524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact