The paper is an attempt to resolve the prescribed Chern scalar curvature problem. We look for solutions within the conformal class of a fixed Hermitian metric. We divide the problem in three cases, according to the sign of the Gauduchon degree, that we analyse separately. In the case where the Gauduchon degree is negative, we prove that every non-identically zero and non-positive function is the Chern scalar curvature of a unique metric conformal to the fixed one. Moreover, if there exists a balanced metric with zero Chern scalar curvature, we prove that every smooth function changing sign with negative mean value is the Chern scalar curvature of a metric conformal to the balanced one.

The Prescribed Chern Scalar Curvature Problem

Fusi E.
First
2022-01-01

Abstract

The paper is an attempt to resolve the prescribed Chern scalar curvature problem. We look for solutions within the conformal class of a fixed Hermitian metric. We divide the problem in three cases, according to the sign of the Gauduchon degree, that we analyse separately. In the case where the Gauduchon degree is negative, we prove that every non-identically zero and non-positive function is the Chern scalar curvature of a unique metric conformal to the fixed one. Moreover, if there exists a balanced metric with zero Chern scalar curvature, we prove that every smooth function changing sign with negative mean value is the Chern scalar curvature of a metric conformal to the balanced one.
2022
32
6
1
21
Chern scalar curvature; Chern–Yamabe problem; Hermitian manifold; Prescribed Chern scalar curvature problem
Fusi E.
File in questo prodotto:
File Dimensione Formato  
Articolo Elia Fusi.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 317.4 kB
Formato Adobe PDF
317.4 kB Adobe PDF Visualizza/Apri
s12220-022-00920-4.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 344.42 kB
Formato Adobe PDF
344.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1866343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact