Pursuing the approach of Gentili and Vezzoni [Math. Res. Not. IMRN 12 (2022), pp. 9499–9528] we study the quaternionic Monge-Ampère equation on HKT (hyperkähler with torsion) manifolds admitting an HKT foliation having corank 4. We show that in this setting the quaternionic MongeAmp`ere equation has always a unique solution for every basic datum. This approach includes the study of the equation on SU(3).

A remark on the quaternionic Monge-Ampère equation on foliated manifolds

Giovanni Gentili;Luigi Vezzoni
2023-01-01

Abstract

Pursuing the approach of Gentili and Vezzoni [Math. Res. Not. IMRN 12 (2022), pp. 9499–9528] we study the quaternionic Monge-Ampère equation on HKT (hyperkähler with torsion) manifolds admitting an HKT foliation having corank 4. We show that in this setting the quaternionic MongeAmp`ere equation has always a unique solution for every basic datum. This approach includes the study of the equation on SU(3).
2023
151
1263
1275
Giovanni Gentili; Luigi Vezzoni
File in questo prodotto:
File Dimensione Formato  
SU(3)5.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 301.57 kB
Formato Adobe PDF
301.57 kB Adobe PDF Visualizza/Apri
S0002-9939-2022-16121-8.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 226.31 kB
Formato Adobe PDF
226.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1866344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact