We define solitons for the generalized Ricci flow on an exact Courant algebroid. We then define a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid over a simply connected nilpotent Lie group, generalizing the bracket flows for nilpotent Lie brackets in a way that might make this new family of flows useful for the study of generalized geometric flows such as the generalized Ricci flow. We provide explicit examples of both constructions on the Heisenberg group. We also discuss solutions to the generalized Ricci flow on the Heisenberg group.
Generalized Ricci flow on nilpotent Lie groups
Paradiso F.
2021-01-01
Abstract
We define solitons for the generalized Ricci flow on an exact Courant algebroid. We then define a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid over a simply connected nilpotent Lie group, generalizing the bracket flows for nilpotent Lie brackets in a way that might make this new family of flows useful for the study of generalized geometric flows such as the generalized Ricci flow. We provide explicit examples of both constructions on the Heisenberg group. We also discuss solutions to the generalized Ricci flow on the Heisenberg group.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_forum-2020-0171.pdf
Open Access dal 01/07/2022
Tipo di file:
PDF EDITORIALE
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.