Several authors have developed equations for estimating digestible energy in horse feeds as an alternative to the inconveniences of in vivo digestibility assays. We aimed to evaluate two of such equations. A dataset was constructed from the literature with 32 mixed feeds and diets of known proximate composition, whose digestibility was measured in in vivo assays. Then, the di- gestible energy of the mixed feeds and diets was predicted with both equations from their proxi- mate components. Precision, accuracy, reproducibility, bias, and decomposition of total error of predictions were determined. Both equations performed almost equally well (R2 = 0.89 vs. 0.87, root mean square error of prediction = 183 vs. 217 kcal/kg dry matter, concordance correlation coefficient = 0.91 vs. 0.86, and linear error = 24.6 vs. 33.6% of total error). Linear bias (p < 0.01 in both equations) resulted in overvaluation of low digestible energy feeds and, to a lesser extent, undervaluation of high digestible energy feeds and was significantly (p < 0.05) related to crude fiber. The obtained results indicate that the accuracy of both equations could be improved by reassessing the effects of crude fiber on the digestibility of the other proximate components.
Evaluation of Two Equations for Prediction of Digestible Energy in Mixed Feeds and Diets for Horses
Valle, Emanuela;Bergero, Domenico;Forte, Claudio;Schiavone, AchilleLast
2022-01-01
Abstract
Several authors have developed equations for estimating digestible energy in horse feeds as an alternative to the inconveniences of in vivo digestibility assays. We aimed to evaluate two of such equations. A dataset was constructed from the literature with 32 mixed feeds and diets of known proximate composition, whose digestibility was measured in in vivo assays. Then, the di- gestible energy of the mixed feeds and diets was predicted with both equations from their proxi- mate components. Precision, accuracy, reproducibility, bias, and decomposition of total error of predictions were determined. Both equations performed almost equally well (R2 = 0.89 vs. 0.87, root mean square error of prediction = 183 vs. 217 kcal/kg dry matter, concordance correlation coefficient = 0.91 vs. 0.86, and linear error = 24.6 vs. 33.6% of total error). Linear bias (p < 0.01 in both equations) resulted in overvaluation of low digestible energy feeds and, to a lesser extent, undervaluation of high digestible energy feeds and was significantly (p < 0.05) related to crude fiber. The obtained results indicate that the accuracy of both equations could be improved by reassessing the effects of crude fiber on the digestibility of the other proximate components.File | Dimensione | Formato | |
---|---|---|---|
Martinez Marin et al 2022.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
561.65 kB
Formato
Adobe PDF
|
561.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.