Aneuploidy is one of the main causes of fetal and embryonic mortality in mammals. Nonetheless, its incidence in domestic ruminants has been investigated little. Indeed, no incidence data have ever been reported for water buffalo. To establish the incidence of aneuploidy in this species, we analysed in vitro matured metaphase II (MII) oocytes with corresponding first polar bodies (I PB) of the river (2n = 50) and swamp (2n = 48) buffaloes. For the first time, six river type probes (corresponding to chromosomes 1–5 and heterosome X), were tested on swamp buffalo metaphases using Multicolor-Fluorescent In Situ Hybridization (M-FISH) before their use on oocytes MII metaphases. Of the 120 total Cumulus Oocyte Complexes (COCs, 60 for each buffalo type) subjected to in vitro maturation, 104 reached the MII stage and were analysed by M-FISH. Haploid chromosome arrangement and visible I PB were observed in 89 of the oocytes (45 in river and 44 in swamp type). In the river type, the analysis revealed one oocyte was disomic for the chromosome X (2.22%). In the swamp type, one oocyte was found to be nullisomic for chromosome X (2.27%); another was found to be nullisomic for chromosome 5 (2.27%). We also observed one oocyte affected by a premature separation of sister chromatids (PSSC) on the chromosome X (2.27%). In both buffalo types, no abnormalities were detected in other investigated chromosomes. Based on merged data, the overall aneuploidy rate for the species was 3.37%. Oocytes with unreduced chromosomes averaged 1.92% across the two types, with 1.96% in river and 1.88% in swamp. The interspecies comparison between these data and cattle and pig published data revealed substantial difference in both total aneuploidy and diploidy rates. Reducing the negative impact of the meiotic segregation errors on the fertility is key to more sustainable breeding, an efficient embryo transfer industry and ex-situ bio-conservation. In this respect, additional M-FISH studies are needed on oocytes of domestic species using larger sets of probes and/or applying next generation sequencing technologies.

Oocyte aneuploidy rates in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH)

Pauciullo A.
;
Versace C.;Gaspa G.;
2022-01-01

Abstract

Aneuploidy is one of the main causes of fetal and embryonic mortality in mammals. Nonetheless, its incidence in domestic ruminants has been investigated little. Indeed, no incidence data have ever been reported for water buffalo. To establish the incidence of aneuploidy in this species, we analysed in vitro matured metaphase II (MII) oocytes with corresponding first polar bodies (I PB) of the river (2n = 50) and swamp (2n = 48) buffaloes. For the first time, six river type probes (corresponding to chromosomes 1–5 and heterosome X), were tested on swamp buffalo metaphases using Multicolor-Fluorescent In Situ Hybridization (M-FISH) before their use on oocytes MII metaphases. Of the 120 total Cumulus Oocyte Complexes (COCs, 60 for each buffalo type) subjected to in vitro maturation, 104 reached the MII stage and were analysed by M-FISH. Haploid chromosome arrangement and visible I PB were observed in 89 of the oocytes (45 in river and 44 in swamp type). In the river type, the analysis revealed one oocyte was disomic for the chromosome X (2.22%). In the swamp type, one oocyte was found to be nullisomic for chromosome X (2.27%); another was found to be nullisomic for chromosome 5 (2.27%). We also observed one oocyte affected by a premature separation of sister chromatids (PSSC) on the chromosome X (2.27%). In both buffalo types, no abnormalities were detected in other investigated chromosomes. Based on merged data, the overall aneuploidy rate for the species was 3.37%. Oocytes with unreduced chromosomes averaged 1.92% across the two types, with 1.96% in river and 1.88% in swamp. The interspecies comparison between these data and cattle and pig published data revealed substantial difference in both total aneuploidy and diploidy rates. Reducing the negative impact of the meiotic segregation errors on the fertility is key to more sustainable breeding, an efficient embryo transfer industry and ex-situ bio-conservation. In this respect, additional M-FISH studies are needed on oocytes of domestic species using larger sets of probes and/or applying next generation sequencing technologies.
2022
12
1
1
9
https://www.nature.com/articles/s41598-022-12603-9
Pauciullo A.; Versace C.; Perucatti A.; Gaspa G.; Li L.-Y.; Yang C.-Y.; Zheng H.-Y.; Liu Q.; Shang J.-H.
File in questo prodotto:
File Dimensione Formato  
75 - Pauciullo et al., 2022 - SREP.pdf

Accesso aperto

Descrizione: articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1873998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact