The geomagnetic field (GMF) is a natural component of Earth’s biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24–96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols.

Transcriptomics and Metabolomics of Reactive Oxygen Species Modulation in Near-Null Magnetic Field-Induced Arabidopsis thaliana

Ambra Selene Parmagnani
First
;
Giuseppe Mannino;Massimo Maffei
Last
2022-01-01

Abstract

The geomagnetic field (GMF) is a natural component of Earth’s biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24–96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols.
2022
12
12
1824
1845
https://www.mdpi.com/2218-273X/12/12/1824
reduction of geomagnetic field; gene expression; metabolomics; flavonoids; isoflavonoids; hydrogen peroxide
Ambra Selene Parmagnani; Giuseppe Mannino; Massimo Maffei
File in questo prodotto:
File Dimensione Formato  
2022 NNMF and Oxidative Stress - biomolecules-12-01824.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1882049
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact