The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic approaches and generate sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with massive high-throughput sequencing producing billions of reads, scRNA-seq allows the assessment of fundamental biological properties of cell populations and biological systems at unprecedented resolution. In this chapter, we describe how cell subpopulation discovery algorithms, integrated into rCASC, could be efficiently executed on cloud-HPC infrastructure. To achieve this task, we focus on the StreamFlow framework which provides container-native runtime support for scientific workflows in cloud/HPC environments.
Bringing Cell Subpopulation Discovery on a Cloud-HPC Using rCASC and StreamFlow
Contaldo S. G.;Alessandri L.;Colonnelli I.;Beccuti M.;Aldinucci M.
2023-01-01
Abstract
The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic approaches and generate sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with massive high-throughput sequencing producing billions of reads, scRNA-seq allows the assessment of fundamental biological properties of cell populations and biological systems at unprecedented resolution. In this chapter, we describe how cell subpopulation discovery algorithms, integrated into rCASC, could be efficiently executed on cloud-HPC infrastructure. To achieve this task, we focus on the StreamFlow framework which provides container-native runtime support for scientific workflows in cloud/HPC environments.File | Dimensione | Formato | |
---|---|---|---|
ChapSingleCellStream23.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.