It is a standard engineering practice to design feedback-based control to have a system follow a given trajectory. While the trajectory is continuous-time, the sequence of references is varied at discrete times as it is normally computed by digital systems.In this work, we propose a method to determine the optimal discrete-time references to be applied over a time window of a given duration. The optimality criterion is the minimization of a weighted L 2 norm between the achieved trajectory and a given target trajectory which is desired to be followed. The proposed method is then assessed over different simulation results, analyzing the design parameters’ effects, and over a UAV use case. The code to reproduce the results is publicly available.
Optimal Reference Tracking for Sampled-Data Control Systems
Bini, Enrico
First
;
2022-01-01
Abstract
It is a standard engineering practice to design feedback-based control to have a system follow a given trajectory. While the trajectory is continuous-time, the sequence of references is varied at discrete times as it is normally computed by digital systems.In this work, we propose a method to determine the optimal discrete-time references to be applied over a time window of a given duration. The optimality criterion is the minimization of a weighted L 2 norm between the achieved trajectory and a given target trajectory which is desired to be followed. The proposed method is then assessed over different simulation results, analyzing the design parameters’ effects, and over a UAV use case. The code to reproduce the results is publicly available.File | Dimensione | Formato | |
---|---|---|---|
Bini_2022-CDC.pdf
Accesso riservato
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.