Prompt-based learning is a recent paradigm in NLP that leverages large pre-trained language models to perform a variety of tasks. With this technique, it is possible to build classifiers that do not need training data (zero-shot). In this paper, we assess the status of prompt-based learning applied to several text classification tasks in the Italian language. The results indicate that the performance gap towards current supervised methods is still relevant. However, the difference in performance between pre-trained models and the characteristic of the prompt-based classifier of operating in a zero-shot fashion open a discussion regarding the next generation of evaluation campaigns for NLP.
Is EVALITA Done? On the Impact of Prompting on the Italian NLP Evaluation Campaign
Basile Valerio
First
2022-01-01
Abstract
Prompt-based learning is a recent paradigm in NLP that leverages large pre-trained language models to perform a variety of tasks. With this technique, it is possible to build classifiers that do not need training data (zero-shot). In this paper, we assess the status of prompt-based learning applied to several text classification tasks in the Italian language. The results indicate that the performance gap towards current supervised methods is still relevant. However, the difference in performance between pre-trained models and the characteristic of the prompt-based classifier of operating in a zero-shot fashion open a discussion regarding the next generation of evaluation campaigns for NLP.File | Dimensione | Formato | |
---|---|---|---|
paper13.pdf
Accesso aperto
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.