Post-wildfire geological hazards are an emerging problem for a number of different environments, including areas not typically associated with these events such as the Alpine Region. The risk connected with post-fire processes such as debris-flows and flood-type events threatens people, infrastructures, services and economical activities. Apart from a few examples, such as in the USA and Australia, there is a lack of models available to quantify the increase in susceptibility of the aforementioned phenomena as a result of the modification induced by the wildfires. In this work we test the application of a modified version of the RUSLE, on GIS, to quantify the post-fire erosive phenomena for a case study in the north-western Italian Alps. The results of its application, taking advantage of high-resolution rainfall series and data deriving from field surveys, highlight the marked increase (more than 20 times) in erosion rates, quantified by expressing both the EI (erodibility index), the A (monthly soil loss) and the SL (monthly sediment loss) rise. The months of April, May and June represent the larger share of the total quantities. This is a consequence of the noticeable increase of the EI, which for the post-fire scenario is more than one order of magnitude higher than the pre-fire one.

Mapping Post-fire Monthly Erosion Rates at the Catchment Scale Using Empirical Models Implemented in GIS. A Case Study in Northern Italy

Vacha, Damiano
First
;
Mandrone, Giuseppe
;
Morresi, Donato;Garbarino, Matteo
Last
2023-01-01

Abstract

Post-wildfire geological hazards are an emerging problem for a number of different environments, including areas not typically associated with these events such as the Alpine Region. The risk connected with post-fire processes such as debris-flows and flood-type events threatens people, infrastructures, services and economical activities. Apart from a few examples, such as in the USA and Australia, there is a lack of models available to quantify the increase in susceptibility of the aforementioned phenomena as a result of the modification induced by the wildfires. In this work we test the application of a modified version of the RUSLE, on GIS, to quantify the post-fire erosive phenomena for a case study in the north-western Italian Alps. The results of its application, taking advantage of high-resolution rainfall series and data deriving from field surveys, highlight the marked increase (more than 20 times) in erosion rates, quantified by expressing both the EI (erodibility index), the A (monthly soil loss) and the SL (monthly sediment loss) rise. The months of April, May and June represent the larger share of the total quantities. This is a consequence of the noticeable increase of the EI, which for the post-fire scenario is more than one order of magnitude higher than the pre-fire one.
2023
Progress in Landslide Research and Technology
Springer
1
99
112
978-3-031-16897-0
978-3-031-16898-7
https://link.springer.com/chapter/10.1007/978-3-031-16898-7_6
Wildfires, Erosion, Slope stability, Hazard, Western Alps
Vacha, Damiano; Mandrone, Giuseppe; Morresi, Donato; Garbarino, Matteo
File in questo prodotto:
File Dimensione Formato  
2023_vachaetal_MappingPostFireErosion.pdf

Accesso aperto

Descrizione: PDF editoriale open
Tipo di file: PDF EDITORIALE
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1888874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact